Hydrothermal and Acid Pretreatments Improve Ethanol Production from Lignocellulosic Biomasses
نویسندگان
چکیده
Hydrothermal and acid pretreatments using different acid charges (1.5%, 3.0%, and 4.5% H2SO4) were proposed for eucalyptus, sugarcane bagasse, and sugarcane straw prior to their bioconversion into ethanol using the semi-simultaneous saccharification and fermentation (SSSF) process. The hydrothermal and acid pretreatments were efficient for hemicelluloses removal from eucalyptus (63 to 96%), bagasse (25 to 98%), and straw (23 to 95%) and to remove a substantial amount of lignin from eucalyptus (10 to 34%) and bagasse (10 to 27%). During pretreatments, pseudo-extractives and pseudo-lignin were generated from biomasses. The SSSF was performed in pretreated biomasses using 24 h presaccharification followed by an additional 10 h of simultaneous saccharification and fermentation (SSF). With hydrothermal pretreatment, the eucalyptus presented the highest ethanol production, but only low values for SSSF parameters were obtained, as follows: ethanol yield (0.017 gethanol/gbiomass), volumetric productivity of ethanol (0.16 g L h), and ethanol concentration (1.6 g L). On the other hand, using acid pretreatment, the straw (pretreated using 4.5% H2SO4) presented the highest ethanol production among the biomasses, assessed based on ethanol yield (0.056 gethanol/gbiomass), volumetric productivity of ethanol (0.51 g L h), and ethanol concentration (5.1 g L).
منابع مشابه
Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments
The production of cellulosic ethanol from biomass is considered a promising alternative to reliance on diminishing supplies of fossil fuels, providing a sustainable option for fuels production in an environmentally compatible manner. The conversion of lignocellulosic biomass to biofuels through a biological route usually suffers from the intrinsic recalcitrance of biomass owing to the complicat...
متن کاملOptimization of Hydrothermal and Diluted Acid Pretreatments of Tunisian Luffa cylindrica (L.) Fibers for 2G Bioethanol Production through the Cubic Central Composite Experimental Design CCD: Response Surface Methodology
This paper opens up a new issue dealing with Luffa cylindrica (LC) lignocellulosic biomass recovery in order to produce 2G bioethanol. LC fibers are composed of three principal fractions, namely, α-cellulose (45.80% ± 1.3), hemicelluloses (20.76% ± 0.3), and lignins (13.15% ± 0.6). The optimization of LC fibers hydrothermal and diluted acid pretreatments duration and temperature were achieve...
متن کاملPretreatments and Factors Affecting Saccharification and Fermentation for Lignocellulosic Ethanol Production
Lignocellulosic biomass can be utilized to produce ethanol, a promising alternative energy source for sustainable energy production and has the potential to be a valuable substitute. Various pretreatment techniques change the physical and chemical structures of the lignocellulosic biomass and improve the hydrolysis rate. The cost of ethanol production from lignocellulosic material is relatively...
متن کاملHydrothermal Conversion of Biomass into Value- Added Products: Technology That Mimics Nature
The term “hydrothermal” comes originally from the field of geology. Hydrothermal reactions generally can be defined as reactions in the presence of aqueous solvents under high temperature and pressure. Such reactions played a very important role during formation of fossil fuels. On the basis of the natural phenomena, we have conducted a series of studies concerning hydrothermal conversion of bi...
متن کاملKey Pretreatment Technologies on Cellulosic Ethanol Production
Conversion of lignocellulosic biomass to fuel ethanol involves pretreatments followed by enzyme-catalyzed hydrolysis to generate fermentable sugars. Efficient pretreatment method can significantly enhance hydrolysis of biomass and thus reduce ethanol production cost. Cellulosic plant materials are mainly composed of cellulose, hemicellulose and lignin, the cheapest source of fermentable sugars....
متن کامل